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Abstract 

Generative adversarial networks (GANs) enable computers to learn complex data distributions 

and sample from these distributions. When applied to the visual domain, this allows artificial, yet 

photo-realistic images to be synthesized. Their success at this very challenging task triggered an 

explosion of research within the field of artificial intelligence (AI), yielding various new GAN 

findings and applications. After explaining the core principles behind GANs and reviewing recent 

GAN innovations, we illustrate how they can be applied to tackle thorny theoretical and 

methodological problems in cognitive science. We focus on how GANs can reveal hidden 

structure in internal representations and how they offer a valuable new compromise in the trade-

off between experimental control and ecological validity. 

 

Keywords: generative adversarial networks; image synthesis; visual stimuli; experimental control; 

natural images  
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The Advent of GANs 

The number and nature of advances in artificial intelligence (AI) of the last decade are nothing 

short of revolutionary. Not only is AI increasingly changing our daily lives (e.g., through the phones 

in our pockets, the cars we drive, etc.), it also has a major impact on other scientific fields. The 

field of cognitive science is no exception, as illustrated by deep learning (see Glossary). Ever 

since a convolutional neural network (CNN) triumphed at the 2012 ImageNet Large Scale 

Visual Recognition Challenge [1], these discriminative networks have been studied extensively 

as a potential model for visual recognition in the brain [e.g., 2–6]. In cognitive science, more and 

more labs are incorporating deep learning into their core research interests and methodological 

toolkits. Here, we explore why generative models, specifically generative adversarial networks 

(GANs) [7], may be the next generation of deep-learning models to advance cognitive science.  

Cognitive science deals with phenomena that are inherently difficult to study. The internal 

representations and mechanisms of the human mind are complex, determined by a multitude of 

factors that do not easily lend themselves to measurement or experimental control. Often, the 

need for experimental control leads to sacrifices in ecological validity or vice versa, a tension 

which is also evident in the choice of stimuli. Simple, artificial stimuli are easier to manipulate and 

offer more experimental control, but generally lack the complexity and richness that is 

representative of our real-world experiences. Rich stimuli face the opposite problem. GANs’ ability 

to synthesize artificial, yet realistic content may relieve this tension. We focus on visual content, 

more specifically on images, which is where GANs have been most successful. In what follows, 

we first introduce what GANs are and discuss recent GAN findings, before demonstrating how 

they can benefit cognitive science. Finally, we reflect on remaining challenges and provide 

directions for future research. 

How GANs Work 

In general, the kind of probability distribution that is learned is what sets generative models apart 

from discriminative models performing classification (such as the CNNs mentioned earlier), which 

are already widely used in cognitive science. The latter typically learn conditional probabilities, 

mapping high-dimensional, complex sensory information to a class label. This allows them to 

discriminate, for example, an image of a cat from an image of a dog (P(“cat”|X) vs. P(“dog”|X), 

where X is the sensory input). Generative models, on the other hand, learn the probability 

distribution over the complex sensory data itself. This allows the model to generate new sensory 

samples of the target distribution (e.g., a new cat image) in addition to discriminating. Due to the 

mathematically challenging nature of this task, generative modelling had previously attracted little 
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attention. Its popularity changed drastically, though, when Ian Goodfellow, “the GANfather”, 

proposed GANs as a solution [7]. 

The key innovation behind GANs is to pit two models against each other as adversaries. 

Figure 1 (Key Figure) provides a schematic of how they work. One model acts as a generator. Its 

task is to learn to generate samples of a certain image distribution. The other model, the 

discriminator, learns to tell apart real samples of the training set from fake ones generated by its 

adversary, the generator. The latter comes down to a simple binary classification task: P(“real”|X) 

vs. P(“fake”|X). Therefore, the discriminator can take the form of a classic CNN. The generator’s 

architecture looks similar but reversed (i.e., upsampling rather than downsampling the input, 

using transposed convolutions). This is accentuated by the mirrored trapezoids in Figure 1. The 

generator takes as input a random noise vector, and produces an output with the same shape as 

the training images (height x width x number of channels). The noise vector can be thought of, 

metaphorically, as the generator’s inspiration. It needs input for every output. While the 

discriminator updates its parameters in order to decrease its classification error, the generator will 

do exactly the opposite. It will optimize its parameters to obtain higher classification error from the 

discriminator. Put differently, the generator tries to produce output that will fool the discriminator 

into labelling it “real”. The two models are trained jointly, such that when the discriminator gets 

better at detecting fake samples, the generator is forced to generate more realistic output, and 

vice versa. The competition between the two types of models is what drives the success of GANs 

in generating realistic output. While applied in many domains (e.g., text generation, speech 

synthesis), they have been most popular and successful in image synthesis.  

The original GAN paper [7] triggered an explosion of further research, some of which we 

will briefly review below. This new research has made GANs produce ever more realistic output 

(see Figure 2), to the point that it can fool most casual observers [8,9]. While new kinds of 

generative models [e.g., 10] are being proposed at a rapid pace, we focus on GANs because of 

the level of realism achieved across a wide range of applications and the public availability of 

many pretrained models. For the same reasons, we think the time is ripe for cognitive scientists 

to start taking full advantage of GANs in their research. 
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Figure 1, Key Figure. The GAN principle. (A) A schematic of the generator and discriminator networks constituting a 

GAN. Note that this is a simplified representation. The generator upsamples noise vectors through multiple learned 

layers, producing image-like outputs. These are presented to the discriminator, intermixed with real training samples. 

The discriminator is trained to classify its input as coming from the training set (real) or the generator (fake). The 

generator is trained to have the discriminator incorrectly classify its output as real. The training samples shown are 

from [1]. The generated sample was synthesized with BigGAN [8]. (B) The counterfeiter-police/detective analogy 

illustrating the GAN logic [7]. The generator operates like a counterfeiter, producing fake money and wishing to improve 

their methods in order to fool the detective. The discriminator takes the role of the detective, who in turn also improves 

their methods to be more successful at catching the counterfeiter. This competition makes both of them increasingly 

better at their job. Icons made by Icongeek26 (dollar note) and Freepik (counterfeiter, detective, bank) from 

www.flaticon.com.  

http://www.flaticon.com/
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What GANs Can Do - Insights from AI 

How does a GAN’s latent space, where the noise vectors are sampled from (see Figure 1), map 

to the output image space? By itself, it is just random, uninterpretable noise, but a trained 

generator imposes structure and meaning on it, turning it into a lower-dimensional feature space. 

Moving through this space along certain (often just linear) directions has been found to result in 

smooth transitions of interpretable image attributes [e.g., 8,9,11,12] (see Figure 3). Moreover, 

performing simple arithmetic with noise vectors can have meaningful effects on the output image 

(e.g., smiling woman – neutral woman + neutral man = smiling man; [11]). It is also possible to 

interpolate between two semantic classes, creating peculiar new hybrid “breeds” [8] (see Figure 

4.A). ArtBreederi, a collective artistic tool, is based on this principle. 

 

Figure 2. Recent progress by GANs trained on face images (A) and ImageNet [1] (B). (A) Figure adapted from a 

tweet by Ian Goodfellowviii. From left to right, the images are from: GAN [7]; DCGAN [11]; CoGAN [99]; Progressive 

GAN [12], © 2018, NVIDIA Corporation; StyleGAN [9], © 2019, NVIDIA Corporation; StyleGAN2 [95], © 2019, NVIDIA 

Corporation. (B) Figure reprinted from [100]. From top to bottom, the images were produced by the GANs proposed in: 

[101], [102], [103], [8]. 

Inspired by such findings, different studies have developed ways to identify latent 

operations that can modify features of interest in generated images [13–17]. InterFaceGAN [15] 

lets one study the latent representations of facial attributes (e.g., age, gender, expression) in any 

pre-trained face GAN, as well as disentangle them such that they can be manipulated 
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independently. Other work has identified linear directions matching simple image transformations 

(e.g., camera movements, color changes; [16]) in the latent space of BigGAN [8]. Finally, certain 

characteristics of generated scenes, like clutter and layout, can be modified through the method 

proposed in [17] (see Figure 4.B). Interestingly, the GAN they studied [9] inserts noise at every 

layer rather than only the input layer. Latent operations from early to late layers first control 

configuration and spatial layout, then object categories, and finally lower-level scene attributes 

like glossiness and color scheme [17]. 

 

Figure 3. Interpretable directions in the latent space of StyleGAN2. By walking through the latent space of a GAN 

in a certain direction, one can vary for example the age of an output face image. Other latent directions affect other 

image attributes (e.g., smile, gender, and eye closure, as shown in the additional examples below the gray dotted line). 

The StyleGAN2 [95] directions as well as the example output images used for this figure were found by Robert 

Luxemburgix. Note that in contrast to many more traditional GANs, StyleGAN2 inserts noise at every layer of the 

generator, not just the input layer. This makes for multiple latent spaces, but for simplicity, we only depict one here. 
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Note that this structure emerges even though GANs are not explicitly trained to represent 

information in this way, nor does structure emerge in the latent space alone. Recent work [18] 

studied how visual information is represented internally in the GAN’s generator and discovered 

interpretable units in the network. These interpretable units are responsible for specific object 

concepts, such as “door units” and “tree units”, and form the basis for the authors’ scene editing 

tool: GANpaint [19, also see 20]. Extending this even further, the method proposed in [21] allows 

users to specify spatially localized modifications using free form descriptions in natural language. 

Can we apply those same GAN manipulations to also edit real, user-supplied images? 

The missing ingredient has long been GAN inversion, the problem of reversely mapping a (real) 

image back to the GAN’s latent space. If successful, feeding the resulting latent vector to the 

generator should faithfully reconstruct the original image. While this is far from a trivial task [22–

24], substantial progress has been made [e.g., 19,22,25–27]. In one of the most recent 

contributions [22], the authors demonstrate how their inversion method enables modifying facial 

attributes, interpolation, and diffusing the inner parts of one face image into the outer parts of 

another (see Figure 4.D). This is achieved without altering the pretrained generator. 

While so far we have discussed GANs trained to synthesize new images from scratch, 

GANs can also perform image-to-image translations [28]. In this scenario, the input is not a noise 

vector, but an image of a certain domain. The output is an image in another domain. Think of 

problems like turning grayscale to color, edges to image, photo to painting, etc. (see Figure 4.C). 

Before GANs, computer vision scientists had to come up with crafty loss functions that were 

tailored to a specific translation. However, GANs offer a more universal and often better solution 

[28]. CycleGAN [29], specifically, can actually be conceived as two GANs, one for each direction 

of the translation (e.g., horse → zebra, zebra → horse). Both have a discriminator that needs to 

be fooled into labelling the translated image as a real image from the respective target domain. 

An additional constraint is that when an input (from either domain) is cycled through both GANs 

(i.e., translated and back-translated), the output should be similar to the original input. Such 

image-to-image GANs can even turn anyone into a graceful ballerina [30] (by transferring 

movements from a professional dance video onto an amateur in another video), as well as give 

rise to new art formsii,iii. Furthermore, the related problem of text to image translation has also 

been tackled with GANs [e.g., 31–33], although the most astonishing results on that task are from 

the Dall-E model [10]. Moreover, GANs have been employed to translate fMRI data back to the 

presented visual stimulus that evoked it [34–40], which is useful for uncovering internal neural 

representations. 
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(See figure legend at the top of the next page.) 
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Figure 4. Examples of recent GAN innovations. (A) Interpolation between two BigGAN [8] classes, creating new 

“breeds”. Figure created using @genekogan’s fork of the BigGAN colab notebookx. (B) Modifying visual attributes of 

generated scenes at different layers of a semantic hierarchy. Figure adapted from [17]. (C) CycleGAN performing 

image-to-image translations. Figure adapted from [29]. (D) In-domain GAN inversion and example applications [22]. 

The images labeled “Input”, “Input A”, “Input B”, “Target” and “Context” are real, user-supplied images. Once the images 

are inverted into a GAN’s latent space, one can apply GAN modifications. Each row represents an example application. 

Figure adapted from [22]. (E) Example applications of SinGAN [42]. SinGAN is trained on a single image (shown on 

the left). Each row represents an example application. Note that the random samples from the single training image in 

the top row have arbitrary sizes. Figure adapted from [42]. 

Finally, there is the idea of training a GAN on a single natural image, as was first adopted 

in InGAN [41]. Typical GANs learn the distribution of different images in a dataset. However, a 

single image in itself also constitutes a distribution, one of image patches. By learning this 

distribution at various patch scales (coarse and fine), GANs can capture a single image’s internal 

statistics or “DNA” [41]. This technique can be used to retarget natural images to different output 

sizes, aspect ratios, and shapes without distorting its DNA. The more recent SinGAN [42] can 

also transform a clipart into a photo-realistic image or blend a new object with the training image, 

for example (see Figure 4.E). Note however that these GANs remain oblivious to most semantic 

aspects, which might result in semantically implausible output [41].  

What GANs Can Do for Cognitive Science 

The previous section highlighted recent GAN work that showcases their potential to generate 

content that is rich, complex and realistic, yet still allows for considerable control. By reconciling 

these two desirable but often conflicting experimental properties, GANs open up new 

opportunities for cognitive science. Next, we will support this by discussing concrete roles that 

GANs have fulfilled in our field or could fulfill in future work. 

Exploiting and Understanding Representations 

Many key questions in cognitive science are about mental representations, from the 

representations supporting perception to how experiences are encoded into memory. Common 

paradigms to probe representations in visual working memory (VWM) rely on the availability of a 

continuous stimulus space, such as a color space (e.g., to manipulate target-foil similarity, to 

create a color wheel for continuous reports) [43,44]. While these paradigms have brought 

important insights into the capacity, fidelity and feature encoding in VWM, they have mostly been 

limited to simple features. Recent work [45] proposed that GANs offer a way to extend this 

research toward more complex and ecologically valid scene images. Creating a scene wheel from 



GOETSCHALCKX, ANDONIAN, & WAGEMANS 2021 
 

11 

a GAN’s latent space, the study showed that participants’ perceived similarity was indeed a 

function of distance on the wheel. Moreover, participants’ error patterns in a memory experiment 

using the scene wheel for continuous reports mimicked those acquired with simpler stimuli. Other 

work [46] likewise proposed to exploit a GAN’s latent space to obtain a window into the 

representations of mental categories. 

Future work will have to further elucidate the psychological validity of the latent space as 

a representational space, especially considering that GANs rely on CNNs which are themselves 

still imperfect models of the visual system [5,47–49]. Nevertheless, the work discussed above 

constitutes a valuable and promising first step. In particular, exploiting GANs to study mental 

representations has two main advantages: (i) it is less constrained than only using hand-picked 

features while still offering some interpretability, (ii) the generator allows points in the latent space 

to be converted to stimuli(as also noted in [50]).  

We also see potential for it to advance theory on topics beyond VWM and categorization. 

Increasing our understanding of how we recognize faces and are able to tell that two different 

images or views of a face are still the same person, is one example. Using a well-trained face 

GAN [e.g., 9] (an option also explored in [50]), future work could complement important studies 

like [51], which relied on hand-picked features and manual photo editing. Another example is a 

study [52] investigating how we represent shapes, which is crucial for object recognition and many 

other tasks. The authors of this study present ShapeComp [52], a space with 100 hand-picked 

features, and even trained a GAN to generate new shapes for validation purposes. Future work, 

however, could study the qualities of their GAN’s latent space as a shape space in its own right. 

Data-driven Hypothesis Generation 

GANs’ synthesizing abilities make them a suitable tool for data-driven hypothesis generation. 

GANalyze [53], for example, is a framework to help discover underlying features driving abstract 

cognitive image properties, like memorability. Indeed, images can be ranked reliably on their 

likelihood of being remembered [54]. While CNNs can accurately predict this ranking (e.g., 

MemNet [55]), they do not readily tell us what gives memorable images their high score. Guided 

by MemNet, GANalyze identified a memorability direction in a pretrained GAN’s latent space. By 

walking along this direction, it gradually visualized what it means for a (generated) image to 

become more memorable (see Figure 5) according to MemNet. The resulting visualizations put 

forward candidate features that were class-orthogonal and indeed correlated with memorability 

(e.g., object size, colorfulness), thereby complementing previous work that had mostly stressed 

class-related effects (e.g., people are more memorable than landscapes). Related GAN work 
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furthermore suggested that turning up a generated image’s memorability score comes with more 

interpretable semantics [56]. Future work could apply the same framework to study other image 

properties (e.g., aesthetics, emotional valence; see Figure 5), provided that they can be quantified 

in a way that offers optimization gradients (e.g., through a CNN) and that the GAN has been 

trained on a relevant image set. 

 

Figure 5. Visual definitions of cognitive image properties produced by GANalyze [53]. By gradually moving along 

a direction in a GAN’s latent space correlated to the property of interest, GANalyze provides “visual definitions” of what 

it means for an image to be characterized more (or less) by the given property. This process is steered by a CNN that 

predicts the property of interest. The predicted scores are indicated in an image’s top right corner on a 0–1 scale. Aside 

from visualizing, the framework can also be used to generate a custom stimulus set to study the effect of a variable of 

interest on a behavioral or neural outcome. 

Somewhat similarly, GANs can help formulate hypotheses on the features driving 

activations in CNNs and other artificial neural networks through “activation maximization” [e.g., 

57]. This is of interest because such networks are popular (although somewhat controversial) 

models of the ventral visual stream and knowing their preferred stimulus tells us something about 

their internal representations. Recent work [58] was able to amplify the spiking activity of monkey 

V4 neurons by presenting images synthesized to maximize the activation in matched CNN units, 
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which implies model-to-brain similarity. However, rather than synthesizing by directly optimizing 

pixel values to obtain activation maximization, one can optimize the latent code of a GAN, as 

proposed in [59]. The GAN acts as a naturalistic image prior making it easier to interpret the output 

and pinpoint candidate features. On the downside, the results will not only depend on the targeted 

unit, but also on the choice of the GAN and its training set. 

Finally, XDREAM [60,61] targets the activity in monkey IT-neurons directly and evolves 

preferred stimuli through a combination of a genetic algorithm and a GAN in an online feedback 

loop. Using a GAN avoids to the need to hand-pick stimuli and lowers the risk of missing critical 

features when sampling from fully defined but more constrained parametric spaces. While mostly 

laying the groundwork for future studies, the initial experiments already suggested that a neuron’s 

preferred stimulus need not be something that the monkey has ever encountered, that invariance 

to transformations might not be a fixed neuron feature, and that there is a major role for experience 

(e.g., some neurons evolved images resembling the monkey’s caregivers). Finally, ongoing work 

[62] is making GANs synthesize preferred stimuli for higher order visual brain areas in humans 

(e.g., FFA, PPA, LOC) using a CNN trained on fMRI data for the optimization (as a proxy for 

neural activations). This could help elucidate to what extent these areas are truly category-specific 

and if so, for which category [e.g., 63,64].  

Exploiting Natural Variation in Image Attributes 

Another application is to use GANs to vary and experimentally test candidate features (whether 

surfaced by a GAN, derived from theory or any other source). For instance, one can train 

GANalyze to find an “object size” direction in the latent space. Generated images modified 

through this method to have the main object take up more space were indeed more likely to be 

remembered by participants in a memory task [53]. While this manipulation might still be 

automatable without GANs (e.g., through smart cropping), others might be less straightforward. 

Consider varying an image’s aesthetic appeal. Sticking with the memorability question, one 

hypothesis could be that aesthetic appeal will make an image memorable. Previous studies had 

to rely on naturally varying images and found no or negative correlations [54,55]. GANalyze, 

however, efficiently varied generated images’ predicted aesthetic score while at the same time 

keeping the class label constant. This had a small but positive effect on memorability, which 

suggests that the beauty of what is depicted (as reflected by the class) and how it is depicted 

might both affect memorability but probably in different ways. 

These past works highlight GANs’ possible advantage over two alternative strategies to 

test candidate features in the context of rich, complex images. A first strategy is to select real 
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images that naturally vary along the critical dimension but are matched on others. Of course, this 

is labor-intensive and it is hard to satisfy all criteria. Arguably, GANs could handle this more 

efficiently. A second strategy is to manipulate images using existing photo editing techniques, 

which in many cases requires graphical skills and manual effort that GANs could avoid. We 

illustrate this further below by discussing example studies that could benefit from a GAN approach 

in future work. A caveat with this approach, though, is the fact that different features could be 

“entangled” in the latent space, which can hamper the possibility to manipulate candidate features 

in a fully independent fashion (see further). 

How do children and adults recognize the material properties of objects based on visual 

input? To address this question, a recent study [65] designed a two alternative forced choice task 

asking which of two objects was real food. The stimuli were pairs of real food objects and a toy 

version of a different material (e.g., plastic), matched for shape and other features. As the authors 

note, the matching was only done “to the extent possible” [65, p. 3]. Here and in similar studies, 

CycleGAN could be used to translate images from one material domain to another (e.g., food → 

plastic), for easier matching and larger stimulus sets. 

Various studies on face perception currently manipulate face images using morphing 

software, which can be effortful. In [66], the authors had to select over 100 anchor points to vary 

facial expression and study how perceived emotion might interact with a face’s perceived gender. 

These studies could benefit from GANs’ ability to efficiently modify an almost unlimited range of 

starting images [15,67,68], as noted before in [50]. Indeed, there is ongoing work from cognitive 

neuroscientists who are building a virtually infinite, parameterized face dataset that is based on 

GANsiv,v. They are looking to identify relevant feature dimensions and their corresponding GAN 

manipulation (e.g., identity, orientation, expression, age). 

Beyond Natural Variation 

Finally, we envision GANs unlocking possibilities for more dedicated types of stimuli, outside the 

range of natural variance, for use in specific paradigms. 

First, studies on art perception attempt to find out what makes an artwork engaging. It is 

believed that ambiguity and indeterminacy play an important role, but as noted in [69], finding the 

right stimuli to test this can be challenging. Real art works suffer from possible confounds 

introduced by historical, stylistic or contextual factors. Simplified alternatives, such as Mooney 

images, do not offer the same richness. A recent contribution [69] proposed to use GAN art from 

the ArtBreederi project instead. The work showed that GAN art spans a wide range of ambiguity, 

with ambiguity quantified as a function of the diversity in crowd-sourced image descriptions. While 
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this work was mostly methodological and did not test the ambiguity hypothesis, it did provide a 

helpful starting point. 

Second, there is work from AI (see above) demonstrating GANs’ ability to generate a 

multitude of morph sequences, for instance, between two image classes (see Figure 4.A and [8]), 

two generated face identities [25], or even two user-supplied images (see Figure 4.D and [22,25]). 

As argued in [70], morph sequences have been employed to address a variety of questions in 

cognitive science, like how autistic-like traits correlate with the ability to flexibly switch from one 

concept to another [71], how serial dependence in face perception supports face recognition 

[72,73], and more [70,74–76]. However, compared to GAN-based morphs, current methods have 

the disadvantage of only allowing for a limited number of stimulus sets, often with stimuli that are 

not very rich or complex. At the same time, a possible limitation with GANs is that its morphing is 

less parameterized, and the result would also depend on the type of GAN and its training set (e.g., 

using BigGAN, see Figure 4.A, will also morph the background, which may or may not be 

desirable). 

Third, we see potential for GANs to generate stimulus sets of “composite” faces, such as 

for behavioral and neural studies on holistic face processing [77–81]. Relevant GAN techniques 

are presented in [22], where inner face parts of one image are semantically diffused into the 

context of another by inversion into a GAN’s latent space (see Figure 4.D). 

A fourth example concerns studies asking whether scene-incongruent objects are 

attended to faster and recognized more easily [e.g., 82–84], remembered better [e.g., 85,86], etc. 

than scene-congruent objects (or vice versa). Perhaps GANs could arrive at realistically looking 

incongruent stimuli more efficiently compared to editing the stimuli manually in Adobe Photoshop 

CS 9.0 (Adobe, San Jose, CA) [87] or staging actual incongruent scenes and photographing them 

[88]. SinGAN [42] can blend (foreign) objects and backgrounds (see also [89,90]). 

Remaining Challenges 

Despite GANs’ advantages, there remain some challenges or caveats to keep in mind. First, it is 

not yet clear how homologous GANs’ latent representations are to perceptual or brain 

representations. The results in [45] (see above) show that distance in the latent space relates to 

perceived similarity and memory performance. Furthermore, the authors of a GAN-based method 

to recover face stimuli from brain activity [34] speculate that the method’s success might be due 

to a topological similarity between the latent space and face representations in the brain. 

Nevertheless, future work should address this more systematically, especially because a variety 

of GANs exist. Indeed, a second challenge is understanding how the results in cognitive science 
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studies might depend on the GANs’ training set, and perhaps also its architecture. Some research 

questions might therefore require training a custom GAN, which brings a third challenge: “they 

are a devil to train” (quoting Alexei Efrosvi). Fortunately, there is ongoing work to facilitate training 

(e.g., allowing for smaller training sets [91]). Fourth, how would we evaluate a GAN’s performance 

(e.g., in terms of achieved realness)? This is still an open question. Different automated metrics 

have been put forward [92,93], but their psychological validity is unclear. An EEG-based 

alternative metric was proposed in [94]. Moreover, given a good metric, what level of realness 

would be required to safely compare results obtained with GAN stimuli to more traditional ones? 

Even the most qualitatively impressive GANs [e.g., 8,95] still contain some artefacts in their 

output. Finally, one should be wary of possible entanglements in the latent space when trying to 

manipulate features of interest (e.g., a latent space operation meant to remove a beard from a 

face, may inadvertently render other face attributes more feminine too). Such entanglements 

might represent real world correlations, but also dataset bias. Thankfully, this is actively being 

addressed in AI and different disentanglement strategies have already been proposed [e.g., 

13,15]. Most of these challenges are currently hot topics of research, and it is possible that 

significant progress will be made soon. 

Concluding Remarks 

GANs achieve both realism and control in their visual output, thereby providing a middle ground 

in a trade-off faced by many cognitive scientists. In the short time they have been around, GANs 

have shed light on important research questions (e.g., in visual memory, neurophysiology). 

However, there still is much more potential to tap. In this review, we offered a primer of relevant 

concepts and findings from AI, and discussed directions on how those could advance cognitive 

science. Since GAN-based methods still have their own challenges, we see them as 

complementing, not replacing traditional methods. Future work could further improve GANs’ 

deployability by addressing some of these challenges (see Outstanding Questions). Of course, 

as artificial neural networks continue to develop, it will be important to explore what other types 

of generative models beyond GANs [e.g., 10] can offer cognitive scientists. Finally, one can also 

speculate about the existence and relevance of generative models of/in the brainvii [e.g., 96]. 

Recent work [97] proposed a generative adversarial framework for probabilistic computation in 

the brain. Perhaps generative models also represent visual information in a more brain-like way 

than discriminative models do [e.g., 98].   
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Glossary 

● Convolutional neural network (CNN): a kind of machine learning algorithm called artificial 

neural networks, which are loosely inspired by biology. They have been particularly successful 

in learning visual tasks, such as image classification. Typically, a CNN consists of a 

succession of layers of units (reminiscent of neurons), where the first layers apply learned 

local filters to the image through convolutions. The first layers produce feature maps that later 

layers learn to recombine globally to arrive at an accurate image prediction (e.g., a class 

label). 

● Deep learning: a kind of machine learning in which complex data, such as image data, is 

modelled by different, successive levels of representation. Each level adds more abstraction 

from the original, raw input creating a hierarchy that bears similarity with the flow of information 

in the brain. A typical CNN is an example of a deep learning model. Each convolutional layer 

extracts learned features that are fed to the next, more high-level layer. 

● Downsampling: producing output of reduced width and height compared to the original, 

image-like input. Going through the different layers of a typical CNN, the resulting feature 

maps get smaller and smaller. 

● Ecological validity: the extent to which the results of a study can be generalized beyond the 

test settings, especially to more real-life settings. Simple, artificial visual stimuli are less 

representative of what we encounter in daily life than naturally occurring stimuli such as 

images. Therefore, they have lower ecological validity. 

● Experimental control: the extent to which a study can prevent factors other than the ones 

being studied from affecting and thus confounding the results. The variation in simple, artificial 

visual stimuli can more easily be constrained to factors of interest than in naturally varying 

stimuli such as images. 

● Genetic algorithm: search or optimization algorithm inspired by natural selection in biological 

evolution. Individuals of a population (e.g., latent GAN vectors) are evaluated on some fitness 

criterion (e.g., neural activation) and only the fittest individuals are selected to be recombined, 

with a possibility for mutations, into a next, fitter generation. 
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● Latent space: Many machine learning algorithms will learn to ENcode their highly complex 

input data into a different format that helps solve the task at hand. In doing so, they learn a 

mapping between the observable input space (e.g., image data) and a so-called latent (i.e., 

hidden) space (e.g., the feature space in a CNN). This space is often compressed. You can 

imagine a GAN’s generator doing the opposite: its input comes from a compressed latent 

space and it DEcodes this into an observable output space (e.g., image data).  

● Loss function: the function a machine learning algorithm needs to minimize, also known as 

cost function. It is a quantification of the dissimilarity between the algorithm’s output and the 

desired output. GANs use adversarial loss, meaning that another model, an adversary that 

differentiates generated samples from real samples of the target distribution, defines the loss. 

A GAN’s generator minimizes the (log) probability of the adversary being correct. 

● Upsampling: the opposite of downsampling (see above). In contrast to a typical CNN, the 

layers of a GAN’s generator upsample their input, meaning the height and width increase.  
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Outstanding Questions 

● To what extent are visual representations in a GAN’s latent space psychologically relevant 

and how similar are they to brain representations? 

● How can a GAN’s achieved realness be quantified, especially at the item level, and to what 

extent do automated measures reflect human’s perception of realness?    

● Which level of realness would be required to safely compare results obtained with GAN stimuli 

to more traditional ones? How good does the GAN have to be, especially in those cases when 

retraining is needed to suit very specific cognitive science designs? 

● Can we extend the current methods used to disentangle image attributes in the latent space? 

Entangled attributes can result from real world correlations, but can also introduce unwanted 

bias or confounds. Different disentanglement strategies have already been proposed, but 

these are yet to cover the wider range of attributes and image types that cognitive science is 

interested in. 

● How can we overcome some of the practical hurdles involved in training GANs when the 

available pretrained GANs are not a good fit for a particular research question? Fortunately, 

many training scripts are publicly available, but choosing the right training settings, using 

smaller datasets, avoiding typical pitfalls (e.g., the discriminator taking a large lead on the 

generator, halting further learning), etc. can still be challenging.  

● To what extent can generative neural networks (GANs or others) model visual object 

recognition and other kinds of visual processing in the brain and how would this complement 

what is already known about discriminative models versus the brain? In addition, would they 

let us move towards modelling more open-ended generative processes (e.g., involving 

imagination, creativity)?  
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Highlights 

● The internal mechanisms of the human mind are often complex, determined by a multitude of 

factors that do not lend themselves well to be measured or controlled experimentally. In many 

cases, the need for experimental control leads to sacrifices in ecological validity or vice versa. 

● GANs offer a valuable compromise in the well-known trade-off between experimental control 

and ecological validity, thereby unlocking new methods for cognitive science that may lead to 

answers to questions that could not be addressed sufficiently before. 

● GANs have recently achieved a huge leap forward in realistic image synthesis. They generate 

a continuous space of realistic looking images that offer surprising levels of control. 

● GANs could become the next AI breakthrough to have a major impact on our field, after 

discriminative deep neural networks. 
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Resources   

i. Simon, J. (n.d.) Artbreeder [Creative and collaborative online tool]. 

https://www.artbreeder.com 

ii. Akten, M. (2017) Learning to see: Gloomy sunday [HD Video]. 

http://www.memo.tv/works/gloomy-sunday/ 

iii. Sarin, H. (2018, September 13) Playing a game of GANstruction. The Gradient. 

https://thegradient.pub/playing-a-game-of-ganstruction/ 

iv. Kietzmann, T. [@TimKietzmann] (2020, June 19) Face perception researchers, if you 

could design a new large-scale image dataset... [Tweet]. Twitter. 

https://twitter.com/TimKietzmann/status/1274026658148696065 

v. Kietzmann, T. [@TimKietzmann] and Doerig, A. [@AdrienDoerig] (2020, June 5) 

Working on a new GAN-based face dataset with  @AdrienDoerig. Emotions intensify. 

[Tweet]. Twitter. https://twitter.com/TimKietzmann/status/1268893738753024001 

vi. Efros, A. (2019, May 31) Reasons to love GANs [Recorded presentation]. GANocracy: 

Workshop on Theory, Practice and Artistry of Deep Generative Modeling, Cambridge, 

MA. http://web.mit.edu/webcast/quest/sp19/ 

vii. Konkle, T. et al. (2021, April 13) Testing generative models in the brain [Recorded panel 

discussion]. Center for Brains, Minds, and Machines (CBMM) Panel Discussions. 

https://www.youtube.com/watch?v=g_KBUXU_UPM 

viii. Goodfellow, I. [@goodfellow_ian] (2019, January 15) 4.5 years of GAN progress on face 

generation [Tweet]. Twitter. 

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en 

ix. Luxemburg, R. [@robertluxemburg] (2019, December 17) StyleGAN2 latent directions. 

[Tweet]. Twitter. https://twitter.com/robertluxemburg/status/1207087801344372736 

x. https://t.co/8r7o5VVBMB?amp=1 
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